ANZEIGE
Unregelmäßige Muster werden interpretierbar
Um detaillierte Informationen über die Eigenschaften von Werkstoffen gewinnen zu können, muss ihre Struktur genauestens untersucht werden. Materialwissenschaftler nehmen winzige Proben unter die Lupe, oder besser: unter das Elektronenmikroskop. Doch diese Hilfsmittel stoßen dabei an ihre Grenzen, denn ab einer gewissen Größe der Strukturen können auch sie der Probe keine Informationen mehr entlocken. Eine solche Grenze haben Materialwissenschaftler der Friedrich-Schiller-Universität jetzt eingerissen. Sie entwickelten eine Methode für das Transmissionselektronenmikroskop (TEM), mit der auch feinste Strukturen mit einem unregelmäßigen Beugungsbild verwertbare Informationen liefern.
Neben dem Abbild der Probe sind mit einem TEM auch Beugungsbilder möglich, die sich als regelmäßige oder unregelmäßige Punktemuster bemerkbar machen. „Bei Analysen mit einem TEM wird die dünne Probe – es handelt sich um Objekte mit Dicken im Nanometerbereich – mit einem Elektronenstrahl beschossen, der durch das Material hindurch geht,“ erklärt Prof. Dr. Markus Rettenmayr vom Institut für Materialwissenschaft und Werkstofftechnologie der Universität Jena. „Durch die Veränderung der Flugbahn der Elektronen entsteht ein Beugungsbild, das Informationen über die Materialeigenschaften verrät.“
Bisher musste allerdings jede Probe vorher genau orientiert werden, das heißt ihre kristalline Struktur musste ausgerichtet werden, um dann ein regelmäßiges Muster zu erhalten. Bei sehr dünnen Proben, die eigentlich genaue Informationen liefern können, klappt das nur mit Glück und in Ausnahmefällen. „Durch sehr komplexe Vektorgeometrie ist es uns gelungen, die Abstände und Winkel zwischen einzelnen Punkten im Beugungsbild auch bei unregelmäßigen Mustern zu interpretieren“, sagt der Professor für Metallische Werkstoffe. „Das gelingt nun für jedes kristalline Material.“ Nach mehreren Jahren des Forschens konnten die Jenaer Materialwissenschaftler nun im Fachjournal „ACS Nano“ den Erfolg vermelden. Kollegen aus dem In- und Ausland haben sich bereits nach der Methode angefragt, um ebenfalls mit ihr arbeiten zu können.
Gemeinsam mit seinem Kollegen Martin Seyring, der an der Entwicklung der neuen Mikroskopiemethode beteiligt war, nutzte Prof. Rettenmayr die neuen Erkenntnisse, um ein vielversprechendes Material genauer zu untersuchen: nanokristallines Mangannitrid. „Dieses Material vollzieht auch bei großen Temperaturunterschieden geringfügige bis keine Längenänderung“, erklärt der Jenaer Materialwissenschaftler die Vorzüge. „Deshalb ist es beispielsweise sehr gut für den Einsatz im Weltraum geeignet, da etwa Satelliten große Temperaturunterschiede auf dem Weg ins kalte All über sich ergehen lassen und trotzdem immer einwandfrei funktionieren müssen.“
Andererseits sind solche Längenänderungen bei anderen Anwendungen auch erwünscht. Mithilfe der neuen Mikroskopiemöglichkeiten ist es den Jenaer Forschern gelungen, einen Mechanismus zu identifizieren, mit dem die kristalline Struktur von Mangannitrid gesteuert werden kann. Dadurch wird auch der Temperaturbereich „maßgeschneidert“, in dem sich die Länge ändert. „Diese Arbeit erfolgte mit Kollegen aus China, den USA und Japan. Die Herstellung des Materials wurde dabei von chinesischen Kollegen von der Beijing University of Technology durchgeführt“, sagt Prof. Rettenmayr. Ein Artikel im Fachjournal „Advanced Materials“ informiert derzeit die nationalen und internationalen Kollegen über die neuen Forschungsergebnisse.