Volltextsuche

Erweiterte Suche

ANZEIGE

Universität Augsburg  |  29.10.2021 17:07

Es wird heiß: Forschen bei 2000°C

Rot glühen Hitzeschilde von Raumfähren beim Wiedereintritt in die Atmosphäre. Obwohl enorme Kräfte und Temperaturen wirken, geschieht nichts, denn: Sie bestehen aus keramischen Verbundwerkstoffen.

Der Ofen

Der Hochtemperaturofen, der das Team rund um Prof. Dr. Dietmar Koch (Leiter des Lehrstuhls für Materials Engineering an der Universität Augsburg, Direktoriumsmitglied KI-Produktionsnetzwerk) unterstützt, erlaubt den Forschenden im Bereich der keramischen Verbundwerkstoffe den dafür nötigen Vorgang der thermischen Hochtemperaturbehandlung genau zu untersuchen. Im Unterschied zu handelsüblichen Backöfen wird das Gerät bis zu 2000°C heiß. Bei einem Hochtemperaturvorgang ist er mit Schutzgasen wie Stickstoff oder Argon gefüllt, damit Sauerstoff – ein hoch reaktives Gas – nicht Teil der chemischen Reaktion wird. Was ihn zudem besonders macht, sind seine Messsysteme, die es ermöglichen, jeden Schritt der Herstellung keramischer Verbundwerkstoffe mitzuverfolgen:

Keramische Verbundwerkstoffe

„Unser Ausgangsmaterial sind polymere Faserverbundwerkstoffe“, erklärt Professor Koch. Dabei handelt es sich um Verstärkungsfasern aus Kohlenstoff oder um keramische SiC Fasern, die in einer Matrix – in diesem Fall ein Polymer, also einem Kunststoff − eingebettet und damit verbunden sind. Diese werden in dem Hochtemperaturofen mit Wärme behandelt, von dem Polymer bleibt eine poröse Kohlenstoffstruktur zurück. „Im Ofen schmelzen wir anschließend Silicium und geben die poröse Kohlenstoffstruktur hinein. Diesen Prozess nennt man Silicierung“, erläutert Koch. Dabei entsteht Siliciumcarbid, eine keramische Matrix, die gemeinsam mit den Verstärkungsfasern einen keramischen Verbundwerkstoff bildet. Er hält extrem hohen Temperaturen stand, ist leicht und weist hervorragende mechanische Eigenschaften auf – zum Beispiel ein schadenstolerantes Verhalten. Das bedeutet, dass keramische Verbundwerkstoffe nicht so leicht zerspringen wie der Porzellanteller zuhause. Grund hierfür sind die enthaltenen Fasern, die die Energie eines Schlages auffangen. Insgesamt macht all dies die Verbundkeramiken interessant für Luft- und Raumfahrt.

„Wir wollen verstehen, wie sich das Material verändert und welche Parameter wichtig sind, um gute Bauteileigenschaften zu erhalten“, erklärt Koch weiter. Deshalb ist beispielsweise eine Wärmebildkamera integriert, welche die Temperaturverteilung auf der gesamten Oberfläche des Werkstücks anzeigt sowie ein Pyrometer, das punktuell und exakt die Temperatur feststellt. Ein Infrarotspektrometer erlaubt es, austretende Gase zu erkennen und zu analysieren, während eine Waage Masseänderungen – sei es Abnahme durch entweichende Gase oder Zunahme bei der Silicierung – im Auge behält. Und auch die Änderung der Probengeometrie, also grob gesagt des „Aussehens“ eines Werkstücks, wird mitverfolgt.

Digitaler Zwilling

Um die entscheidenden Parameter aus der Datenmenge herauszufiltern, erhalten die Forschenden Unterstützung von einer KI, denn: „Wenn ein Experiment eine hohe Festigkeit zum Ergebnis hat und man diesen Zustand wünschenswert findet, dann interessiert uns, welche Umstände hierzu geführt haben. Die Temperatur? Die Länge des Hochtemperaturvorgangs? Die Möglichkeiten sind vielfältig“, konkretisiert Koch. Deshalb werden alle Daten aus dem Prozess sowie aus der Überwachung des Werkstückes dazu verwendet, im Bereich „Digitale Zwillinge für Produkt, Werkstoff, Prozess und Produktionsnetzwerk“ des KI-Produktionsnetzwerks einen „digitalen Zwilling“ von ihm abzubilden. Dieser „virtuelle Ofen“ kann alle Möglichkeiten durchprobieren und entsprechende Zusammenhänge finden. „Die Forschung um und mit dem Hochtemperaturofen zeigen, wie eng verzahnt die einzelnen Forschungsaspekte des KI-Produktionsnetzwerk sind und wie sie sich gegenseitig bereichern“, kommentiert der Direktor des KI-Produktionsnetzwerks, Prof. Dr. Markus Sause, den Neuerwerb.