Volltextsuche

Erweiterte Suche

ANZEIGE

VON STEPHAN LAUDIEN  |  03.04.2013 16:48

Warum die Schabe kräftig zubeißen kann

Biologe der Universität Jena erforscht dank eines Stipendiums der „Daimler und Benz Stiftung“ die Kräfteverhältnisse an Insekten-Panzern und deren Materialeigenschaften.

Jena (sl/FSU) Wenn ein Laufkäfer einen Wettlauf gegen einen Geparden bestreiten würde, so trüge die Raubkatze scheinbar mühelos den Sieg davon. Bezogen auf seine Körpergröße ist der Käfer jedoch dreimal schneller unterwegs als der Gepard. Ein Grund für das schier unglaubliche Leistungsvermögen der Insekten ist ihr starrer Panzer, das Exoskelett. „Dieses Skelett ist die erfolgreichste Skelettform in der Natur“, sagt Dr. Benjamin Wipfler von der Friedrich-Schiller-Universität Jena. Der Evolutionsbiologe fügt hinzu, dass die mechanischen Eigenschaften dieses Außenskeletts faktisch noch nicht erforscht worden sind. Wipfler möchte nun die Kräfteverhältnisse am Panzer und dessen Materialeigenschaften ergründen. Dazu beginnt er mit dem primären Kauapparat von geflügelten Insekten. Seine Arbeit wird für zwei Jahre von der „Daimler und Benz Stiftung“ gefördert. Benjamin Wipfler errang eines von zehn Postdoc-Stipendien in Höhe von 40.000 Euro. Bundesweit hatten sich über 200 Nachwuchswissenschaftler aus allen Fachdisziplinen um ein Stipendium beworben – zwei gingen nach Jena.

Wipfler schwärmt von den vielfältigen Eigenschaften des Chitins. Dieses Material sei elastisch, könne hohem Druck und Zug widerstehen und sei dank spezieller Einlagerungen stellenweise so hart wie menschlicher Zahnschmelz. Als Versuchsobjekt hat sich der Wissenschaftler von der Universität Jena die Amerikanische Großschabe (Periplaneta americana) ausgesucht. Um die physikalischen Eigenschaften ihres Kauapparates zu ergründen, setzt Wipfler auf die Finite-Elemente-Analyse. Dieses Verfahren kommt bei Crashtests zum Einsatz und basiert auf der Auswertung von Daten, die an einer Vielzahl vorher definierter Messpunkte gewonnen werden. Wipfler spannt eine Schabe in eine Art Schraubstock und will sie dazu bewegen, mit voller Kraft zuzubeißen. Mit hochempfindlichen Messgeräten sollen dabei die Kräfte an der Kopfkapsel des Insekts gemessen werden. „Hoffentlich beißt die Schabe wirklich zu“, sagt Wipfler. Anders als räuberische Insekten sei die Schabe ein typisches Fluchttier, das lieber das Weite sucht, wenn eine Gefahr droht.

Um die Kräfteverhältnisse am Kopf der Schabe exakt untersuchen zu können, greift Benjamin Wipfler auch auf 3D-Modelle des Tieres zurück. Der Zoologe von der Universität Jena arbeitet eng mit zahlreichen Partnern zusammen, er spricht von einem stark interdisziplinär angelegten Projekt. So kooperiert er mit Dr. Tom Weihmann vom Lehrstuhl für Bewegungswissenschaft des Instituts für Sportwissenschaft der Uni Jena bei den Messungen am lebenden Tier. Außerdem arbeitet Wipfler eng mit Prof. Dr. Ming Bai von der chinesischen Akademie der Wissenschaften zusammen. Bai vermisst die Insekten mit Hilfe eines Teilchenbeschleunigers, der in Shanghai steht. „So erhalten wir exakte Daten zur Morphologie der Tiere“, sagt Wipfler. Sie bilden die Voraussetzung für den Bau der originalgetreuen dreidimensionalen Modelle.

Bei geflügelten Insekten sind die Mundwerkzeuge, die sogenannten Mandibeln, vergleichsweise simpel aufgebaut. Sie sind lediglich an zwei Punkten aufgehängt und werden durch zwei Muskeln bewegt. Dennoch wirken dort enorme Kräfte. „Es ist erstaunlich, dass die Kopfkapsel diesen Kräften standhalten kann“, sagt Wipfler. Erste Erkenntnisse zeigen, dass die gewaltigen Kräfte am Kopf der Insekten über Verstärkungsleisten abgeleitet werden. Wipfler und sein Team wollen verstehen, wie diese Ableitungen funktionieren. In einem zweiten Schritt geht es darum, Fragen nach der Evolution der Tiere zu beantworten. Die Forscher wollen herausbekommen, ob es beispielsweise einen typischen „Räuberkopf“ bei Insekten gibt.

Noch sind Wipflers Arbeiten reine Grundlagenforschung. Nach dem Kauapparat der Tiere sollen das Laufen und das Fliegen untersucht werden. In ferner Zukunft könnten die Ergebnisse konkreten Nutzen bringen, etwa um neue Prothesen zu entwickeln oder Roboter zu bauen.