Volltextsuche

Erweiterte Suche

ANZEIGE

VON INFORMATIONSDIENST WISSENSCHAFT  |  11.01.2012 09:24

TU Berlin: Intelligente Baumaterialien heilen sich selbst und schützen das Klima

Einladung zur Antrittsvorlesung von Prof. Dr. Dietmar Stephan am 17. Januar 2012

Baustoffe und bauchemische Produkte umgeben uns überall im Alltag, auf Straßen und Fußwegen, in Gebäuden und Brücken. Kaum von der Öffentlichkeit bemerkt, hat in den letzten Jahren hier eine revolutionäre Entwicklung eingesetzt. Viele moderne Baustoffe sind mit Hilfe der Bauchemie so verbessert oder ganz neu entwickelt worden. So können beispielsweise solch berühmte Bauwerke entstehen wie die Öresundbrücke, die weltweit längste Schrägseilbrücke oder der 321 Meter hohe „Burj al Arab“ in Dubai, mit seiner außergewöhnlichen Silhouette. Und in Zukunft sind noch weitaus schwierigere Probleme zu bewältigen. Der Herausforderung, dafür „intelligente“ Baustoffe zu entwickeln, stellt sich das Fachgebiet „Baustoffe und Bauchemie“ der TU Berlin, eine Stiftungsprofessur der „Deutschen Bauchemie e. V.“ Am 17. Januar 2012 hält der Inhaber der Professur, Prof. Dr. Dietmar Stephan, seine Antrittsvorlesung. Redner werden unter anderem sein: der Präsident der TU Berlin, Prof. Dr.-Ing. Jörg Steinbach, der Vorstandsvorsitzende der Deutschen Bauchemie e.V., Johann J. Köster sowie der Präsident des Bundesverbandes der Deutschen Industrie (BDI), Prof. Dr. Hans-Peter Keitel.

Der Verband der Deutschen Bauchemie unterstützt die Professur „Baustoffe und Bauchemie“ an der TU Berlin über einen Zeitraum von fünf Jahren mit Stiftungsmitteln. Danach wird die TU Berlin das Fachgebiet weiterführen und so für die Baubranche eine nachhaltige Wirksamkeit entfalten.

In seiner Antrittsvorlesung wird Professor Dietmar Stephan über die Herausforderungen an die Baustoffe der Zukunft sprechen und darlegen, wie die Bauchemie dazu beitragen kann, diese zu bewältigen. Ein Großteil des globalen Energie- und Ressourcenverbrauchs geht beispielsweise heute auf den Bau und Betrieb von Gebäuden zurück, da sich manche Baustoffe derzeit kaum oder nur minderwertig recyceln lassen. Auch nimmt der Flächenbedarf für neue Gebäude weiter zu, weil immer noch zu viele Gebäudeflächen ungenutzt bleiben, statt zum Beispiel Oberflächen zusätzlich zur Energiegewinnung zu nutzen. Hier gibt es allerdings inzwischen vielversprechende Ansätze, etwa im Bereich multifunktionaler Fassadenkonstruktionen. Zudem muss der Klimawandel bei der Baustoffentwicklung berücksichtigt werden, denn die neuen Materialien werden in Zukunft noch extremeren Bedingungen standhalten müssen. Die angestrebte Energiewende verlagert die Energiegewinnung verstärkt an unwirtliche Orte, seien es Offshore-Windkraft- oder Gezeitenkraftwerke, in denen das Material einem starken Angriff durch Meerwasser ausgesetzt ist. Solaranlagen werden in der Wüste gebaut, wo die Baustoffe extremen Temperaturschwankungen und Sandstürmen ausgesetzt sind. Nicht zuletzt erfordern auch neue Formen des Wohnens und Arbeitens neue Baumaterialien.

Neue Materialien sollen Schadstoffe aus der Luft ziehen und mit Pflanzen für besseres Klima sorgen

Der Einfluss der Bauchemie als der wichtigste Innovationsgeber ist dabei für alle Baustoffe enorm. Chemische Additive wie Fließmittel, Härtungsbeschleuniger oder -verzögerer, Beschichtungen oder auch bauchemische Abdichtungen sind vielfach die Grundlage für modernes ressourcenschonendes Bauen.

Um diesen vielfältigen Herausforderungen zu begegnen sind neue, auch interdisziplinäre Lösungsansätze gefragt. So können zum Beispiel die Bionik mit ihren baustofflichen Vorbildern aus der Natur und die Nanotechnologie mit ihren Möglichkeiten der kleinen Dimensionen zu neuen Lösungswegen der Produktenwicklung führen.

Intelligente Materialien sollen sowohl auf wechselnde Umgebungsbedingungen reagieren als auch drohende Überlastung oder das Ende ihrer Gebrauchsfähigkeit anzeigen. Moderne Ansätze sind heute unter anderem Materialien, die von selbst „heilen“ oder die bei Beschädigungen Abwehrstoffe freisetzen. Baumaterialien für das Wohnen der Zukunft könnten zum Beispiel nicht nur fotokatalytisch die Luft von Schadstoffen befreien, sondern auch mit Hilfe von Pflanzen und Biofilmen für ein besseres Klima sorgen. Darüber hinaus sollten sie zu Gewinnung, Speicherung und Verteilung regenerativer Energien beitragen. Bei all diesen Überlegungen liegt immer auch ein Schwerpunkt in der Lebenszyklusbetrachtung von Materialien und Gebäuden. Das bedeutet: Denken in Werkstoffkreisläufen und die Entwicklung neuer Recyclingstrategien schon während der Produktentwicklung.